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Convection experiments were conducted in a porous slab 3 m in diameter and 30 cm 
thick, using two quite different media : a filling of rubberized curled coconut fibre and 
of clear polymethylmethacrylate beads. The second experiment involved the 
successful use of a visualization scheme for the flows a t  the upper boundary. 
Convection began in a hexagonal pattern with a slight tendency to form into rolls, 
but became very complex, irregular and three-dimensional at higher Rayleigh 
numbers, without developing any obvious temporal instabilities. Above a Rayleigh 
number of 1000 a significant number of dendritic downwellings appeared, where 
smaller downwellings seemed to feed into larger areas such that the whole complex 
may have converged into a single downwelling plume. The visualization provides 
direct confirmation that the lateral scale of the convection decreases with increasing 
Rayleigh number, approximately as (a2 + I ~ ) - O . ~ .  

Nusselt number versus Rayleigh number curves were obtained for both 
experiments. The only feature they have in common is a central section where the 
slope on a log/log graph is slightly over 0.5. On the graph from the first experiment, 
this section is preceded by a slope close to 1 and followed by a slope close to 0.33. The 
temperature measured at a point in the fill 25mm below the top boundary was 
unsteady a t  conditions representative of the upper two segments of the graph; 
sensitivity was insufficient to measure fluctuations a t  lower temperature differences. 
The Nusselt number for the bead fill jumps upward just above onset (where d = 

4n2), rapidly settles to a slope of 0.52, and then gradually breaks upward again to a 
slope of greater than 1. Increases in conductivity and permeability close to the 
boundary are not a large enough fraction of the boundary-layer thickness to cause 
this. A new phenomenon, lateral thermal dispersion, appears to be responsible. It 
occurs because there is no constant separation distance between adjacent channels in 
a bead fill. Thermal exchange in the junction pores exceeds the average if the flow 
is fast enough, especially when the fluid is more conductive than the beads. 

A simple boundary-conduction theory can be matched to the uncontaminated 
results. It is based on relative scaling of the residence time of fluid in the boundary 
layer, and predicts Nusselt number growth as the 0.55 power of Rayleigh number 
toward the high values typical of major geothermal areas. 

1. Introduction 
1.1 .  Nusselt numbers of geothermal systems 

The key feature of a major geothermal system, whether on land or beneath the sea 
floor, is a high intrinsic heat transport. For example, pre-exploitation surveys a t  
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Wairakei (New Zealand) measured a surface heat loss that summed to about 
400 MW, mostly concentrated over a hot area of about 2 km2 (Fisher 1964). Deep 
drilling a t  the nearby Broadlands area delineated a double plume of area less than 
2 km2 at a depth of 1 km, confirming that the spreading of thermal phenomena at  the 
surface tends to be due to the mushrooming of the upwelling plume (Grindley & 
Browne 1975 ; Elder 1965). These data are quite rudimentary, but nevertheless allow 
the estimation of one of the two primary dimensionless numbers of any convective 
system. The Nusselt number is simply the ratio of the thermal flux transported by 
convection to the flux that would be transported by conduction alone. Given the 
natural convective flux and the area of hot phenomena, one only needs to estimate 
the depth and temperature of a plausible heat source, apply a factor of 2 to 4 to the 
area to include recharge, and a Nusselt number can be calculated. Microearthquakes 
were observed a t  a depth of 7 km beneath the Rejkanes (Iceland) geothermal area 
(Ward 1972), so that it seems reasonable to fix a source of 500°C a t  5km. The 
conductive flux is therefore 0.3 W/m2 and the advective flux over 6 km2 is 70 W/m2, 
leading to a Nusselt number of 230. 

1.2. Nusselt numbers and boundary layers 
Without any further knowledge about the convective system, a high Nusselt number 
N can be related to the formation of boundary layers. At an impervious boundary, 
all the heat must be transported by conduction. At a microporous open boundary, 
this is still true (Ribando, Torrance & Turcotte 1976), but fails when macroscopic 
plumes erupt through the boundary, such as a t  the sea-floor smokers (Corliss et al. 
1979). The mean thermal gradient a t  the boundary must be N times the overall 
thermal gradient across the convecting medium, so that the mean-temperature 
profile in a porous convecting slab must look like figure 1. The boundary-layer 
thickness can therefore be conveniently defined as h/2N, where h is the height of the 
slab. The deviation from this of a natural effusive boundary is not material: even 
there, a system circulating meteoric water must acquire its heat a t  a hot impervious 
boundary at depth, where the boundary layer develops. It is interesting that, even 
when such a large natural system is given a generous heat-source area of 6 km2, the 
boundary-layer thickness is only 11 m. 

1.3. Laboratory experiments 
The importance of this becomes clear when experimental work on porous convection 
is examined. The purpose of laboratory work is not to directly simulate a natural 
geothermal system, but to obtain an understanding of the mechanics of the 
convection, such as the pattern and aspect ratio of the convecting cells and, in 
particular, of the effect of the instability, or Rayleigh number. For a porous slab, the 
~ 

aL gDhAT Rayleigh number is defined as 
.a? = 

where aL is the expansion coefficient of the fluid, g is gravity, D is permeability, AT 
is the temperature difference, K is a diffusivity found by dividing the matrix thermal 
conductivity L by the heat capacity of the fluid and vL is the kinematic viscosity of 
the fluid (Wooding 1957). Where properties vary with depth and temperature, 
appropriate averages can be taken (e.g. Straus & Schubert 1977). Convection begins 
above a critical Rayleigh number of 4n2 (Lapwood 1948), as has been verified by 
Hartline & Lister (1977) in a Hele-Shaw cell (Hele-Shaw 1898). The Nusselt number 
is identically unity below the critical Rayleigh number for a horizontal slab, and 
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FIGURE 1. Left: a plot of horizontally averaged temperature T(mean) against depth for an idealized 
convecting porous slab (solid line). In  the absence of convection, the conductive temperature profile 
would be as given by the dashed line. At the boundary, where heat must be transferred by 
conduction, the gradient must be N times steeper, where N is the convective Nusselt number. A 
convenient definition of the boundary-layer thickness is therefore h / W ,  where h = slab thickness. 
Right : varying upper profiles in a real geothermal area, due to the variation of permeability near 
the surface. Nothing is actually known about the basal boundary, though the water penetration 
theory (Lister 1974) predicts a boundary very similar to the idealized one of an infinitely 
conducting heat sink. 

differs negligibly from unity even when there is topography on the conductive 
boundaries (Hartline 1978). Above the critical Rayleigh number convection begins 
abruptly, with cells whose aspect ratio is robust to wavy topography on boundaries 
and even advection of the medium, at least for two-dimensional systems (Hartline & 
Lister 1981 ; Fehn & Cathles 1979). 

One would expect there to be some general relation between Rayleigh number and 
Nusselt number, subject to relatively minor variations caused by other dimensionless 
numbers. For example, the heat transport of free convection between parallel 
conducting plates has been shown to be a weak function of the Prandtl number u / K  

(Rossby 1969). If there were such a general relation, i t  would be possible to estimate 
the Rayleigh number, and hence the deep permeability of natural systems, as well as 
produce reasonably accurate models for their formation and evolution (e.g. Lister 
1974, 1984). Instead, a compilation of some of the published data on heat transport 
demonstratcs a wide variation over a limited range of moderate Rayleigh numbers 
(figure 2). A feature of many of the experimental curves is a sudden breakover from 
a slope of near 1 to a slope of about 1/3. This was attributed by Elder (1967) to a 
change from porous-medium convection to a form of free convection. The breakover 
was supposed to occur when the Nusselt number for porous convection, growing 
linearly with increasing temperature difference, overtook the Nusselt number for free 
convection of the same fluid, growing according to a fractional power law. The idea 
was that the presence of the 'obstacles' can hardly increase the heat transport over 
that of free fluid, which should certainly be true if the beads or matrix have a similar 
thermal conductivity to that of the fluid. Problems arise in applying this criterion 
when the matrix is much more or much less conductive than the fluid, and in any case 
it gives little insight into the physics of the mechanism. 
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FIGURE 2. A representative compilation of published heat transport data, rescaled 
where necessary to show onset close to the theoretical critical Rayleigh number of 4n2 
(Lapwood 1948). This value for the onset has been confirmed by a sensitive experiment in a Hele- 
Shaw cell (Hartline & Lister 1977); some published results differ owing to problems in measuring 
the physical properties of heterogeneous media. -, A theoretical upper bound to the heat 
transport obtained with a variational method by Busse & Joseph (1972) ; their two-wavenumber 
solution takes off more steeply at  a Rayleigh number of 280. ----, Hele-Shaw cell, thickness 
4.75 mm, oil; 3, 5, 8 mm glass beads; 6 mm plastic balls; heights and configurations not given, 
except that the last, high-Rayleigh-number experiment was like an overgrown coffee percolator 
filled with foam plastic beads and water (Elder 1965). -.-I-, 1 = ‘granular material’; 2 = 8 mm 
glass spheres; 3 = 18 mm glass spheres, no other data. A Hele-Shaw cell, height 2 cm, width 30 cm 
and thickness 6 mm, kerosene fill, followed curve 1 up to a Rayleigh number of 800 (Elder 1967). 
. . . . .  , 1 = 1.9 mm quartz sand, water; 2 = 2.25 mm quartz sand, water and 4 mm lead balls, water; 
3 = 1.9 mm quartz sand, oil; 4 = 1.7,  3.0, 4.0mm glass beads, water; 5 = 0.9, 2.0 mm glass beads, 
oil and 4 mm polypropylene spheres, water; all depths 5.35 cm (Combarnous 1970). 000 ,  3.25, 
5.25 mm glass beads, water and 5.25 mm glass beads, silicone oil, no other data (Bories 1970). 
m.., 1 = 1 mm to 7 mm glass beads, water; 2 = 10 mm glass beads, water; 3 = 10 mm glass 
beads. turpentine; 4 = 15 mm steel balls, turpentine; height 4 cm (Schneider 1963). AAA, 1 = 
3 mm glass beads, water, depth 4.3 cm and 6 mm glass beads, depth 8.6 cm; 2 = 14.3 mm glass 
beads, water, depth 8.8 cm (Buretta & Berman 1976). In  these last three cases, the symbols are used 
only to make curves visibly separate : they are not data points. 

A close examination of figure 2 shows no obvious systematic relation between the 
conditions of the experiments and the levels of the curves, a situation not helped by 
offhand reporting of experimental details. The confusion has led to two other 
suggestions of what influences the breakover in slope: that there is some sort of 
‘finite ’ heat transfer coefficient between fluid and solid, or that there is a fundamental 
change in the convection to a ‘fluctuating regime’ (Combarnous & Bories 1975; 
Caltagirone, Cloupeau & Combarnous 1971). All of these suggestions can in fact be 
combined into one elegant and simple criterion : the convection changes to a form of 
free convection when the boundary-layer thickness defined above comes comparable 
with the pore size of the porous medium. An unusually accurate experiment in a 
liquid has shown that the power law for heat transport in free convection is close to 
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1/3 (Katsaros et al. 1977), and Krishnamurti (1970b) has shown that the high- 
Rayleigh-number regime is turbulent. Some of the additional apparent scatter in 
figure 2 is due to the difficulty of making corrections for the variation of fluid 
properties with temperature, and of measuring the true matrix properties in the first 
place. If published data had to be rescaled in Rayleigh number to show a common 
onset of convection a t  the value 4x2, then it is likely that the Nusselt numbers are 
also in error. It will later be argued that the very high Nusselt numbers reported by 
Elder are due to lateral thermal dispersion in his apparatus. This phenomenon leads 
to a still more-stringent criterion for a bead-type fill to model a porous medium. 

1.4. Size of apparatus 

A critical parameter for porous slabs is the ratio of slab height to pore separation, 
since this limits the maximum Nusselt number that can be attained before the 
boundary layer ceases to span several pores. A high Nusselt number requires also a 
high Rayleigh number, and so the permeability of the bed needs to be high. However, 
it is well known (e.g. Scheidegger 1974) that the permeability of a bed of beads is 
proportional to the square of the bead size, so that large beads are required to achieve 
a high permeability. This means that the slab height must be large, and it is also 
desirable to maintain a large aspect ratio. Otherwise transitions in the size of 
convective cells are liable to be sudden (as in Hartline & Lister 1981) and this will 
cause cusps to form in the Nusselt-number curve (e.g. Combarnous & Bories 1974). 
Thus, a very large apparatus is needed to investigate this problem properly. 

2. The apparatus 
A fibreglass tank was constructed capable of holding a porous layer 30 em thick 

and circulators for the hot and cold boundaries 7 cm thick. The shape, dictated by 
the use of a double-spiral of aluminium channel for the hot base, was an irregular 
hexagon 3 m across the flats (figure 3). Insulation 15 cm thick on base and sides was 
estimated to have a thermal leakage (dry) of 1.2 and 0.6 W/OC respectively. Heat was 
provided by a heater system distributed throughout the spiral and controlled by 
duty-cycle switching through a range of 1 W to 33 KW. Feedback of the product of 
current and voltage assured maintenance of the nominal 1 YO power accuracy from 
10 W upwards, and the zero offset was calibrated by timing the power pulses with a 
stopwatch. The circulating pump used for the second experiment had a provision for 
measuring the mechanical heat input. 

The cooling circulator was in the form of a swirlpool fed by a central and six 
tangential jets, graded in volume to reduce radial temperature gradients (see figure 
10). Lake water was added to the flow of a recirculating pump to maintain the jet 
water at a constant temperature ; the return flow temperature was measured as most 
representative of the boundary temperature and rose a maximum of 1 "C above the 
jet temperature for the highest thermal flux. 

A schematic section through the apparatus is shown in figure 4, as configured for 
the second experiment. Long, averaging temperature sensors had been perfected by 
then, so that it was possible to measure a temperature representative of that of the 
metal boundary as well as that of the hot circulator water. The bottom sensor was 
calibrated by replacing the swirlpool with a layer of insulation and heating the whole 
apparatus. Leakage was too great to obtain a reliable calibration of the mid-fill 
sensor, so that its resistance coefficient was assumed the same as that of the bottom 
one. 
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FIGURE 3. Diagram of the dimensions of the apparatus (in m), also showing the double-spiral 
construction of the hot circulator. The outer rim is insulation up to the level of the porous fill, and 
a channel for the recirculating water above that. The fill is 30 cm thick, giving an aspect ratio of 
10: 1 (after Gibson 1980). 

The temperature drop between the circulating fluid (mercury-in-glass ther- 
mometer) and the bottom averaging sensor is shown in figure 5. The slope of less than 
1 is characteristic of forced convection aided by thermal convection. Discussion 
about the use of these data is given in the text pertaining to figure 8. 

3. Experiment 1 : fibre packing 
3.1. Experimental techniques 

In  the search for materials of small pore size and high permeability, it was thought 
that an ideal had been found in rubberized curled coconut fibre, a product used for 
filters and packaging. The grade chosen had fibres about 3 mm apart, and had a 
stable flat shape, so that the apparatus would be filled precisely by 12 layers of the 
material. A labyrinth was constructed to provide enough path length to measure the 
permeability, and the results are shown in figure 6. The scatter a t  the low-velocity end 
is due to the difficulty of measuring accurately a head difference of less than 1 mm ; 
in the end, a measuring telescope was used to compare the heights of spar buoys 
made out of sewing needles, cork and paint. The apparent slight increase in 
permeability with velocity is heavily dependent on the single high-velocity point, but 
it is what would be expected for the drag of a fibre tangle : as the Reynolds number 
rises, the effective drag cross-section of each fibre declines, leading to less obstruction 
of the flow. The Reynolds number of 2 corresponds to the flow velocity of a plume 
a t  the Rayleigh number of about 2200, using the measurements of Hartline (1978) 
in a Hele-Shaw cell. The permeability has shown only a small change up to this point, 
and the flow is not locally turbulent because the Reynolds number for flow around 
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FIGURE 4. Schematic cross-section through the apparatus, configured as for the second experiment. 
Scale is given by the 30 cm thickness of the fill. HC = hot circulator, T,, = temperature thereof, 
dots = heating cables, THB = true boundary temperature, T,, = temperature measured by long 
cylindrical sensor grouted into groove, T,, = temperature measured by similar sensor in centre of 
fill, canted rectangle = section through graphite anode, TCB = temperature of cold boundary, 
dotted zone beneath this = stainless-steel cloth cathode, T,, = temperature of cold circulator, 
CC = swirl pool of cold circulator. It will be apparent that T,, may be lower than THB, and that the 
difference between T,, and T,, is the sum of the drop across the clear plastic film and a drop similar 
to that between THc and THB. The first experiment had an aluminium top plate, no visualization 
scheme, and no usable internal sensors other than some silicon diodes 2.5cm below the top 
boundary. 

each fibre remains well below unity at all temperature differences achieved by the 
apparatus. 

The near 100 YO porosity of the curled fibre has the advantage that the remaining 
properties of the medium are effectively those for pure water, and therefore well 
known. However, the ease with which water convects is a strong function of 
temperature, and some correction scheme must be devised to account for this. 
Figure 7 presents logarithmic plots of the variation with temperature of the relevant 
properties of water. The Nusselt number, a function of ilk, can be obtained very 
simply in the corrected form 

w(l-(1:,-20-0.29-)0.0028) 
N =  

( THc - TCc - F) 15.9 > 

where W = heater input ; T ,  = 0.5 (!PHc + Tee), the mean temperature ; 0.0028 is the 
slope of l/k variation against temperature; THc = hot circulator temperature; 
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FIGURE 5. Plot of the temperature difference between the hot circulator water and that measured 
by a long cylindrical sensor grouted into a groove on the upper surface of the aluminium hot 
boundary, against input power W in W. Error bars a t  the left indicate the expected size of the 
temperature error. The equation of the fitted line is only a guide to the temperature drop between 
fluid and metal, because the sensor groove was not closed in by a conductive metal cap (see 
figure 4). 
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FIGURE 6. Permeability of rubberized curled fibre batting, versus flow velocity. Reynolds number 
is based on a 3 mm fibre-to-fibre spacing. The dashed line, indicating a slight increase with velocity, 
is heavily dependent on the single high-velocity point. However, an increase with increasing 
Reynolds number is expected; the Reynolds number of 2 corresponds to the porous plume velocity 
a t  a Rayleigh number of 2200 (see text) (diagram after Gibson 1980). 
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FIQURE 7. Plots of the properties of water influencing the convection, expressed as natural 
logarithms of the ratio to the properties at  20 "C. k = thermal conductivity; 7 = dynamic 
viscosity; a = expansion coefficient. The bottom graph shows the combined effect of these property 
changes on the calculation of Rayleigh number, and a quadratic fit to the central region called 
ACOR (see text). 

T,, = cold circulator temperature; 15.9 = the known heat conductivity of a slab of 
water 30 cm thick and 8.14 m2 in area: and 

0.925 

Y =  0.41(&) , 

is the corrected estimate of the sum of the temperature drops between both 
circulating fluids and their respective boundaries (see discussion below). A small 
fraction of this is subtracted from the mean temperature to allow for the fact that 
the top boundary is expected to have a thinner fluid boundary layer than the bottom 
boundary, as the cold circulator pump power is nearly 100 times greater than that 
of the hot circulator. 

The properties of water that determine the Rayleigh number (equation (1.1)) are 
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FTGIJRE 8. Quantitative results of the first experiment, expressed as logarithmic plot of Nusselt 
number against Rayleigh number. Error ellipses represent estimates of the precision of' the points. 
The straight line with a slope of 1/3 represents the theoretical heat transport of free convection 
according to Katsaros et al. (1977) and Howard (1966). The dashed curve is a plot of equation (5.4) 
from the discussion section (see text). 

combined a t  the bottom of figure 7 and, between 15 "C and 40 O C ,  are fitted by a 
quadratic called 

ACOR = (1 +(T-20)0.072+ (T-20)20.0005), (3.3) 

giving a Rayleigh-number relation 

d = 916 (THc-Tcc -F)  (1+ (Tm-20-0.2~)0.072+(Tm-20-0.2~)20.005) 
(3.4) 

that is corrected for changing water properties according to the mean temperature 
in the porous slab. The justification for this is in the results obtained by Booker 
(1976) for the heat transport of free convection with a fluid with a very strong 
temperature-dependent viscosity. Even though the hot plumes become much 
narrower than the cold plumes, a Nusselt number calculated using the Rayleigh 
number obtained from viscosity at the mean temperature is within 1 %  of the 
experimental data for a viscosity ratio of 4 :  1, and within 12% for a ratio of 300: 1. 

3.2. Experimental results 
The results of the experiment are shown in figure 8. Except for the three lowest 
points, all data were obtained with decreasing power loads since air bubbles appeared 
under the top boundary on the way up, and interstitial air was probably impeding 
the flow. The very large error ellipses a t  the low-Rayleigh-number points are due to 
the very low fluxes and temperature differences near the onset of convection. The first 
point is taken a t  2.5W heater power, comparable to leakage fluxes and with an 
unknown (for this experiment) power contribution from the hot circulator pump ; the 
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measured temperature difference is only 0.10 "C, so that the disagreement between 
the data and the theoretical onset is not significant. 

The most obvious feature of the curve is the gradual change in slope from near 1 
a t  low Rayleigh number to near 113 a t  high Rayleigh number. Superimposition of a 
transparent copy of figure 8 over figure 2 shows that the Nusselt number is nearly 
coincident with the upper bound of the experimental data (and below the upper 
theoretical bound) in the mid-Rayleigh-number range, and then drops below the 
curves of Elder (1965, 1967) as the slope flattens. In this respect the result does not 
differ qualitatively from the older data except for the density of points and the 
gradualness of the change. Quantitatively, however, the Nusselt number approaches 
that due to free convection through a slab of the same geometry, calculating a 
free-convection Rayleigh number by the relation 

d" = 4.047 x lo* (THC - TCc - 9) (1 + (T, - 2 e 0 . 2 9 )  0.072 

and using the relation 
N = 0.0626*+ 

+ (Tm-20-0.2F)20.0005), (3.5) 

of Katsaros et al. (1977). This result differs from that reported by Khurana (1988) for 
convection in helium, where it appears as if the slope of the Nusselt-number curve 
drops to 217 above a Nusselt number of 30. At a Rayleigh number of lo9 the Nusselt 
numbers are: helium 79, water 62 from the two experiments. The Prandtl number 
v / K  is an order-of-magnitude larger for water than for helium, and this could account 
for the differences in both Nusselt number and exponent. In the work of Rossby 
(1969) the trend was to higher Nusselt number with higher Prandtl number; here it 
seems to be reversed. Since there is almost as great a problem with measurement of 
free convection heat transport as there is in porous media, it is conservative to use 
the results of a careful experiment using the same fluid. 

3.3. Theoretical insights 
When the boundary layers become thinner than the spacing between the curled 
fibres, the peel-off mechanism should be little influenced by their presence, and the 
convection should be indistinguishable from free convection in the entire absence of 
the porous fill. This is a special property of the fibre-tangle type of fill with near 
100% porosity, and is not matched by other porous beds where the beads or particles 
interfere substantially with free convection. Another way of looking at this problem 
is the discussion in Ping Cheng (1978) where, in media of 'very high ' permeability the 
effective Rayleigh number changes from d* to d * D / h z  = d as D/h2 goes from 0.1 
to 0.01. This represents the change from flow dominated by fluidlfluid friction to 
fluidlbed friction, and it is implied that the onset of convection is being discussed. 
When boundary layers are well established, h should be replaced by the boundary- 
layer thickness, or perhaps that thickness multiplied by 27/20, since the critical 
Rayleigh number of a porous slab with one solid and one open boundary is 27 rather 
than 4012 (Wooding 1957). Working back from the permeability, convection should 
be substantially that of a porous medium when h = 4.5 mm and substantially free 
when h = 1.4 mm. The respective boundary-layer thicknesses should therefore be 
3.3 mm and 1.05 mm, or Nusselt numbers of 46 and 143. 

Comparing these numbers to the curve in figure 8, the slope has already changed 
substantially by a Nusselt number of 46, but seems to have closely approached 113 
by the highest Nusselt number achieved, 141. This justifies the fitting of the highest 
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measured point to the free convection Nusselt line by changing the numerical factor 
in figure 5 to that of equation (3.2). Increasing the factor moves measured points up 
to the left at a 45’ angle, since the Nusselt number is increased and the Rayleigh 
number decreased when the effective temperature difference is reduced. Perhaps that 
last point should have been left a short distance below the free-convection Nusselt 
line ; the kink in the curve outlined by the last 10 measurements makes it difficult to 
evaluate the approach to asymptotic slope. If so, the true correction factor should be 
somewhat smaller, but the qualitative features of the results remain the same, and 
the shift of the highest points in the second experiment would be comparable with 
the symbol size because of the lower power levels reached in that experiment. 

It remains to note two things about this first experiment. One is that the Nusselt 
number/Rayleigh number slope has dropped below unity before the boundary layers 
should behave as if in free convection, so that there might be a fundamental change 
in the slope of the curve for a true porous medium. The other is that time-series 
temperature measurements a t  a silicon diode buried in the fill 25 mm below the top 
boundary showed fluctuations a t  all Rayleigh numbers tried down to 2580 (N = 44), 
which was the lowest for which temperature changes were measurable with the 
instrumentation used (digital sensitivity 0.05’C). This is above the first break in 
slope for the Nusselt-number curve, but the fact that a ‘fluctuating regime’ occurs 
here does not mean that it would for a porous medium of low or moderate porosity. 
The near 100 YO porosity of the curled fibre allows boundary layers to peel off just as 
in free convection ; this is not possible in a low-porosity medium because the primary 
heat capacity there is in the stationary matrix, and convective patterns can change 
only slowly as heat is advected from one part of the matrix to another. 

4. Experiment 2: Lucite beads 
4.1. Characteristics of the porous material 

It was clear after the first experiment that the porosity, particularly the thermal 
porosity equalling the fraction of advectable heat capacity after allowing for 
dispersion, is an important dimensionless number for porous-medium convection. It 
is not practical to reach values as low as in a cracked rock (5% or less), as the 
permeability would then be too low for a useful laboratory experiment, but it should 
be low enough to stabilize the convective patterns until boundary layers become 
thinner than the pore size. A commercially available polymethylmethacrylate 
(‘Lucite ’ T.M.) bead was selected for the fill as it is clear, cheap and has a low thermal 
conductivity. Manufactured as a feedstock for plastic moulding, the beads are not 
round but slightly rounded short cylinders of 3 mm diameter and length. The sharp 
edges might induce turbulence into the channel flows earlier than for rounded beads. 
An experiment on the permeability of pea gravel had shown that there was about a 
20% permeability loss a t  a pore-velocity Reynolds number of 200, based on mean 
particle diameter. Using the Hele-Shaw cell velocity data of Hartline (1978), this 
Reynolds number should be reached in the apparatus at a Rayleigh number of 
300000, more than 100 times the highest actually achieved. 

Alternatively, one can test for the validity of Darcy’s linear law (Darcy 1856), 
using the discussion in Ping Cheng (1978) whereby the Reynolds number should be 
less than about 0.1, when based on flux velocity and Di for lengthscale, for a 5% 
deviation in the friction. Given that the permeability of the fill is 3.3 x m2 (see 
below), this more stringent condition requires the flux velocity to be less than 
1.7 mm/s and the dimensionless velocity to be less than 1800, as scaled by K / h  for the 
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FIGURE 9. A plot of Nusselt number measurements against Rayleigh number near the onset of 
convection. The position of the scales on both axes has been set by examination of the sequence 
of solid elliptical or circular symbols, whose dimensions are an estimate of the errors. They were 
obtained during startup of the experiment when the insulation between apparatus and floor was 
dry and the conditions in the crawl-space beneath the building were believed stable. Solid triangles 
were obtained during the main decreasing-power series of measurement,s, as in figure 11, and open 
triangles were obtained after a final hot excursion to degas the fill. N indicates no convection 
detectable by the visualization scheme, while C indicates onset. Small numbers between the open 
triangles and the solid rounded symbols give the number of days of stabilization before 
measurement of the next point in the sequence (arrows where obscure). A small leak had reduced 
the quality of apparatus insulation during the acquisition of open-triangle data, and underfloor air 
circulation was more variable than before. 

fill and its height. Again, using an extrapolated fit to the velocity data of Hartline 
(1978), this velocity should be reached a t  a Rayleigh number of 23000, comfortably 
above the highest values actually reached. Even the hot plumes, with their 
substantially lower viscosities (see figure 7)  should experience an unchangcd 
permeability. 

The problem with an irregular bead fill is that  the permeability and the thermal 
conductivity are both affected by the packing density. In particular, the packing 
achieved in the long columns of an apparatus to measure the Permeability is not 
likely to be as dense as in the open bed of the big apparatus. It was decided to rely 
on a suggestion of J. R. Booker (personal communicat,ion) of using the apparatus 
itself to determine these quantities by studying the onset of convection. The filled 
circular or elliptical points in figure 9 show the upward progression in power levels 
when the apparatus was freshly filled. On the basis of this progression, it was felt, that 
a Nusselt number of 1 could be chosen within 10% giving 

W(l  -(Ts,-20)0.0028) 
N =  

( T H C  - T C B  -Y) 7.65 ' 

which differs from (3.1) by having a measurement of the mean fill temperature T,, 
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(see figure 4) replacing T,, having a cold-boundary temperature TCB corrected for the 
thermal drop across the boundary film, and in the numerical factor. This last implies 
that the conductivity of the matrix is 0.29 W/m "C, compared to that for pure water 
of 0.60 W/m "C and for polymethylmethacrylate of 0.17 W/m "C. This is not 
unreasonable for a mixture with porosity 0.38 and a structure with tortuosity to the 
paths through the higher conductivity material. 

4.2. Convective properties of the apparatus 
The same, consistent, upward progression of conditions was felt to establish the 
Rayleigh number within 5% as 

d = 3 0 . 1 ( T ~ c - T c ~ - y )  (1 +(Ts2-20)0.072+ (T,,-20)*0.0005) (4.2) 

by fitting various lines and curves to a figure scaled in the same general way as 
figure 9. As it was possible that sufficient stabilization time had not been allowed for 
this progression, an  attempt was made at the end of the experiment (a full year later) 
to characterize the onset of convection more precisely. The result is the pattern of 
open triangles following the last excursion up to full power to degas the apparatus 
(figure 9). At first sight these seem to negate the supposed precision of the original 
determination of N and d,  and so a short discussion is needed. 

The group of four open triangles with an upwards trend to the left a t  Nusselt 
numbers of 1.96 to 2.52 are the record for a deliberate attempt to see how long the 
Convection took to  restabilize after a sudden drop from a Rayleigh number of 373 
( N  = 8.1), the point indicated by the open triangle in figure 13. Conditions return 
closely to those before the excursion to degas the apparatus, but only after a 
substantial excursion and overshoot in the Nusselt number. Nevertheless, the flow 
patterns observed a t  the top boundary by the visualization scheme change only 
subtly over the 11 days between the first and last observations a t  a constant power 
input of 23.4W. A 'time constant' of 31 hr is obtained by dividing the thermal 
resistance actually exhibited by the fill under these conditions (temperature drop 
near 1.4 "C) into the thermal mass of the hot circulator, 450 kg of water equivalent. 
This compares to fluid residence time in a plume of 13 hr, a plume re-equilibration 
time of 40 hr (assuming a 'thermal porosity' of about 1/3), a cell re-equilibration 
time of 6 days (four legs of a nearly square cell) and a thermal diffusion time for the 
slab by conduction of 15.5 days. The thermal mass of the hot circulator is therefore 
negligible compared with the times of convective pattern rearrangement, and the 
overshoot is likely to be due to the maintenance of plume velocities by heat stored 
in regions of matrix bathed by hot plume fluid, rather than by actual pattern 
rearrangement. Since the changes in the upward progression were small between 
stages, it is probable that enough time elapsed between the measurements except for 
the two l l -day periods prior to the actual onset of convection, denoted by the 
symbol C in figure 9. 

There remains the problem of why the open triangles around the critical Rayleigh 
number display such a huge apparent hysteresis. The key is the dotted triangle of 
figure 9, labelled N to denote that the visualization scheme showed no fluid 
movement. Yet the Nusselt number appears to be 1.5 a t  an input power level of 
8.6 W. A heat leak of only 3 W through the floor (3 "C across dry insulation, less 
across wet) would bring the dotted triangle of figure 9 down to a Nusselt number of 
1. The existence of a reasonably stable point near the Rayleigh number of 7 ,  where 
the only deliberate heat input was the hot circulator pump power of 1.6W, shows 
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that the points around the critical flux of 8 W were reliable under the original 
conditions of cell startup. 

The convective breakaway in heat transport, known to occur a t  a Rayleigh 
number of 47c2 (Lapwood 1948), and the conductivity estimated from the conductive 
heat transport, can be used to back-calculate a permeability. The value obtained is 
3.3 x lo-' m2, and compares well with 4.4 x lo-' m2 calculated from the Kozeny 
formula 

where P = the volumetric porosity and S = the surface area per unit volume, if one 
short cylindrical bead is assumed to be packed into every cube of the same 3 mm 
dimensions (Scheidegger 1974). 

D = 5 P3/S2 ,  (4.3) 

4.3. Visualization of the flow 

The key feature of this experiment was to be a visualization scheme for the flow 
pattern. To this end, the metal top boundary used for the first experiment was 
replaced by a transparent Teflon film 0.18mm thick. The maximum temperature 
drop across this film was 1.39 "C, while the corresponding drop across the porous fill, 
after all boundary corrections, was 35.0 "C. Beneath the film was a stainless-steel 
gauze of 40% opacity, and, buried halfway into the fill, were 13 graphite slabs, 
canted at about 45" to minimize their effect on the convection and heat transport (see 
figure 4). The plain water fill was changed to a solution of 27 p.p.m. bromothymol 
blue, acidified with both hydrochloric and acetic acids to  be just to  the acid side of 
the colour change from blue to yellow (pH about 5.5). The visualization operated 
when the stainless-steel gauze was made the cathode, and the graphite slabs the 
anode, for electrolysis by 60 V a t  2 A for 10 min. The liquid near the cathode became 
more alkaline and changed to the blue form of the dye, a much more intense colour 
than the yellow. Flow caused the boundary fluid to migrate toward the downwellings 
and collect there before being removed into the bulk porous fill, where it mixed with 
fluid that had been made more acid at the anodes and disappeared. Numerous 
batches of coloured fluid could be made by this technique, the only cost being the 
gradual liberation of hydrogen and oxygen gases a t  the electrodes. The method was 
adapted from the report of Baker (1966) by the substitution of bromothymol blue for 
thymol blue, to bring the colour change closer to neutral pH. A search for and test 
of other dyes did not yield any superior to bromothymol blue. 

The results, shown for various Rayleigh numbers in figures 10 and 11 in black and 
white, are the first visualizations of three-dimensional convection in a porous slab 
with two similar and normal boundaries. The only previous three-dimensional 
visualizations were the collection of fluid-phobic aluminium particles above the 
downwellings of a porous fill bounded on top by a thin layer of free fluid (Bories & 
Thirriot 1969) and observations of convection cells drifting through a small array of 
temperature sensors (Sondergeld & Turcotte 1977). The former experiment had a 
closed isothermal boundary on one side and a semi-open semi-insulated boundary on 
the other, while the latter lacked the resolution to  do more than identify the 
existence of cells. 

At a Rayleigh number of 50 convection was well-enough established to produce a 
clear pattern (figure 10a). Instead of the rolls universally expected for the initial 
form of convective breakdown, what is observed are hexagons spaced nearly two 
layer thicknesses apart. As the Rayleigh number was raised slowly from this point, 
the hexagons did seem to try to organize themselves into rolls. The asymmetry of the 
onset, whereby one boundary was maintained a t  constant temperature while 
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FIGURE 10(a) .  For caption see p. 304 

the other was slowly heated, and the shape of the apparatus could both be involved 
in the primary appearance of hexagons. The experiment with the semi-open top 
boundary also developed hexagonal patterns, but these were spaced 3.3 times the 
layer depth apart (Bories & Thirriot 1969). The larger scale confirms the semi-open 
nature of that top boundary; the influence of surface-tension effects on scale and 
pattern is unknown. 
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FIGURE 1 0 ( b ) .  For caption see p. 304. 

The first significant modification of the basic hexagonal pattern had developed by 
a Rayleigh number of 248, figure 10 ( b ) .  This picture can be compared with the one 
obtained on the way down in Rayleigh number at 258, figure lO(c). The cold 
boundary temperature is colder and the power level is higher for the later picture, but 
the Nusselt number is similar and so is the pattern of convection, in character though 
not in detail. On the way up to figure l O ( b )  a significant event occurred which gives 
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FIGURE 10. (a) Pattern of downwellings (dark) in the apparatus outlined by the collection of 
coloured liquid formed electrolytically a t  the top boundary. Photograph taken by a 35-mm camera 
fitted with a 17 mm wide-angle lens mounted near the ceiling near the centre of the apparatus. The 
image has been processed to remove the reflections of the room lights in the swirlpool above the cold 
boundary, utilizing the fact that the downwellings are blue, the background is yellow and the light 
reflections are white. A positive transparency taken through a green filter was sandwiched against 
a negative taken through a yellow filter to make the prints. Rayleigh number d = 50 increasing, 
Nusselt number N = 1.7, power W = 18 W ;  corrected temperature difference AT = 1.36 "C; photo 
taken 305 min after the centre of a 10 min-long electrolytic pulse of 60 V a t  2 A. A 47 cm-long rule 
is visible crossing an upwelling hexagon at top left. The very faint downwelling just below the mid- 
line is primarily due to a relative paucity of blue fluid manufactured there. ( b ) .  Pattern of 
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downwellings obtained as in (a).  d = 248 increasing, N = 5.6, W = 248 W, AT = 5.54 "C, 33 min 
after colouring pulse, cold boundary 24 "C. The simple hexagonal pattern of (a )  has evolved into 
a more complex one of interlinked downwellings. (c)  Pattern of downwellings obtained as in (a) .  
d = 258 decreasing, N = 5.7, W = 372 W, AT = 8.45 "C, 31 min after colouring pulse, cold 
boundary 16 "C. The pattern is qualitatively similar to ( b ) ,  but different in detail. Fainter regions 
just above and below the cold water supply pipe (crossing the apparatus horizontally) are due to 
the non-uniform distribution of the graphite anodes. The irregular shape just below centre is a thin 
air bubble under the top film. (d )  Pattern of downwellings obtained as in (a ) .  d = 330 decreasing, 
N = 6.8, W = 545 W, AT = 10.49 "C, 15 min after colouring pulse. A clear family resemblance to (c), 
but there are more cells so that the pattern is smaller in scale. 
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FIGURE 11 (a ) .  For caption see p. 308. 

insight into the mechanism of what is happening. The cold water supply failed and 
the circulator had to  be shut down; owing to  evaporation, this had the effect of 
cooling the cold boundary by 2.5 "C in 18 hr, more than doubling the temperature 
difference across the slab. The overall convection pattern was the same as in the 
previous normal image, but several of the flows toward downwellings had developed 
subsidiary, or tributary, downwellings a t  90" to the main ones. The direction of the 
breakdown agrees with that of free convection in the presence of a large-scale shear 
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FIGURE 11 (6). For caption see p. 308. 

flow (Richter 1973), but the mechanism must be different, as the temperature drop 
across the boundary layer is not high enough for it to become unstable within itself. 
Two aspects are interesting : one is that exactly the same pattern restabilized after 
the 24-hr disturbance, even though the temperature difference between the 
boundaries dropped below critical for a while after circulation was restored ; the other 
is that, given time for the pattern to re-equilibrate, it took almost another doubling 
of the temperature difference for similar features to appear. The temperature 
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FIGURE 11. ( a )  Pattern of downwellings obtained as in figure lO(a). d = 576 decreasing, N = 1 . 1 ,  
W = 1212 W. AT = 15.55 "C, 12 min after colouring pulse. Still finer scale, and the beginning of a 
change in the number of downwellings that gather toward a node, or downwelling plume. ( b )  
Pattern of downwellings obtained as in (a) .  d = 736 decreasing, N = 12.9, W = 1830 W, AT = 
18.35 "C, 12 min after colouring pulse. Scale continues to shrink, and there is the beginning of a 
hierarchy to the downwellings. ( c )  Pattern of downwellings obtained as in (a) .  d = 1142 
decreasing, N = 21.3, W = 4030 W, AT = 21.22 "C, 6 min after centre of colouring pulse with 
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electrolysis still on. Blank areas have begun to appear where coloured liquid is not being produced 
as fast as it is swept away. A finer pattern and still more of a hierarchy to the downwellings. (d) 
Pattern of downwellings obtained as in (a). d = 1807 decreasing, N =  37, W = 9030 W, AT = 
24.37 "C, 6 min after centre of colouring pulse with electrolysis still on. Dye production is now 
inadequate except directly over the 13 anodes, so that the pattern is incomplete, and the darkness 
observed has only a partial relation to the collecting area of the downwelling. In  the few areas 
where similarity can be traced, the pattern seems to be substantially finer than in (c ) .  
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difference is now high enough for tributary convergences to develop on both 
boundaries, and, as the boundary flows are not independent, a very complex re- 
arrangement of the pattern occurs. It is no longer a matter of hexagons trying to 
organize into rolls, but an intrinsically three-dimensional irregular pattern. 

Figure 10(d) has an obvious family resemblance to figure 1O(c),  but some of the 
larger upwellings (blank areas) have been subdivided by downwellings to induce a 
finer general scale. A major change is apparent on figure l l(a),  where tributary 
downwellings no longer exclusively act to subdivide upwelling zones, but begin to 
take on a dendritic aspect, feeding in toward foci, or major downwelling plumes. The 
increased sharpness of the picture is partly due to the visibility penetration depth, 
about 8 mm, becoming more comparable with the thickness of the boundary layer, 
15 mm, a t  a Nusselt number of 10. 

Figures 11 (b)-11 ( d )  show more of the same trend, not only to a finer scale, but to 
an increasingly dendritic plume-feeding structure. The thickness a t  which the 
boundary layer becomes unstable is shrinking more rapidly than is the horizontal 
spacing between plumes, allowing more complex feeding flows to develop. It is 
possible that, if the colour-generation scheme could have worked rapidly enough to 
give full coverage of the apparatus at the conditions of figure 11 (d) ,  another change 
in character might have been discernible. Where anodes were in upwellings, and 
allowed more than a single node to be made visible, there is evidence of a substantial 
decrease in the scale of the convective plumes. As will be discussed later, the 
boundary layer has shrunk to 4 mm, comparable in scale with the 3 mm bead size. 

4.4. Dependence of $ow structure on Rayleigh number 

It would be useful to have some quantification of the change in pattern size with 
Rayleigh number, and yet this is very difficult because the pattern is not regular and 
it is hard to decide whether a faint downwelling trace does or does not subdivide 
a plume area. The results of two independent sets of observations are shown in 
figure 12. The linear fit would predict 60 plumes a t  the Rayleigh number of figure 
11 ( d ) ,  while an estimate based on the changes in pattern size, where those can be 
followed between figures 11 (c )  and 11 ( d ) ,  is 72, not significantly different in view of 
the precision available. 

4.5. Heat transport 

The reliable measurements of Nusselt number are plotted against Rayleigh number 
in figure 13, again on the same scale as the prior data in figure 2. The curve outlined 
by the data is remarkably different from those of prior work. The onset of heat 
transport is very steep and rises above the theoretical ‘upper bound’ of Busse & 
Joseph (1972), the curve then flattens a t  a low Rayleigh number, but steepens to a 
slope of greater than 1 toward the highest Rayleigh numbers reached. One can argue 
that the equilibration times near the onset were inadequate, and that a data point 
such as the one labelled ‘ C ’  in figure 9, which was partially convecting, would have 
moved to a higher Nusselt number with a longer equilibration time. The triangles, 
obtained at decreasing power, do seem to be heading for a lower Rayleigh number of 
onset, but the data point labelled ‘N’ ,  a t  a Rayleigh number of 27 was definitely not 
convecting : the heat leakage problem does not affect the temperature difference and 
the calculation of a Rayleigh number. The point obtained 16 days earlier (figure 9) 
shows traces of flow, a picture not very convincing either way, as if it  was trying to 
die out. Thus, that Rayleigh number of 33 is a minimum for onset of convection, 
allowing for the very considerable lag time near the critical level. Shifting the scale 
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FIGURE 12. A plot of estimates of the number of upwelling plumes (blank areas) in figures 
10(u, b, d ) ,  11 (u,  b,  c) .  Squares were obtained by Ling-Yun Chiao, choosing a ‘typical’ plume and 
dividing its area into that of the apparatus. Triangles were obtained by Lister by counting plumes 
on the tracings made by Chiao. The line is a ‘reasonable’ eyeball fit, not a true least-squares 
regression, allowing somewhat for the dashed line at 25. This is the number of times a hexagon two 
layer depths across the flats would fit into the apparatus area, if such a fit were geometrically 
possible. 

so that 33 becomes 4n2 brings the points in the 50-80 Rayleigh-number range, below 
the Busse & Joseph (1972) bound, and makes the lower part of the new data follow 
curve 3 of Schneider (1963) obtained with 10 mm glass beads and turpentine. 
Splitting the difference bebyeen decay and onset, as would be the most appropriate 
reaction to the idea of time-delay hysteresis, leaves points well above prior data and 
slightly above the theoretical bound. 

Even the most extreme readjustment of onset leaves a clear break in slope centred 
on a Rayleigh number of 80. The Nusselt number is about 3 and the convective 
pattern clearly defined and stable-hence the big gap between figures 10(a) and 
10(b).  The 24-hr cooling excursion discussed above gave the convective pattern an 
opportunity to change when it was near a Rayleigh number of 68, but it did not. The 
triangles in figure 13 retrace the same curve on cooling, and the analysis by stability 
of the boundary layer to subsidiary breakdown indicates that there should be no 
mechanism inducing change. One must conclude that the break in slope is an 
intrinsic property of the convection. 

A five-week period of unchanging conditions separates the last filled circle on 
figure 13 from the first open circle. Air diffusion into the fill through the top 
membrane was beginning to precipitate near the hot boundary. At the highest 
thermal fluxes, flow was vigorous enough to force the bubbles to the surface, and it 
was then possible to bleed them from underneath the film. Some 5 %  by volume of 
air was eventually bled out, 3 of the pore volume. Many more upwelling plumes 
developed in the open-circle region than under the corresponding conditions for the 
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FIGURE 13. A plot of all the reliable Nusselt-number data against Rayleigh number, axes scaled 
using the results of figure 9. 0 ,  Data obtained a t  steps of increasing power; 0 data clearly 
affected by the liberation and migration of air bubbles in the apparatus; A, main sequence a t  
decreasing power steps ; A intermediate point taken 5 days after a final degassing excursion to full 
power, may not be adequately equilibrated. Numbers in circles relate points to  the photographs 
of convection patterns a t  the cold boundary (figures 10 and 11). ---, Semi-theoretical curve 
obtained from a simplified treatment of boundary layers (see $ 5 ) .  Corrections applied are discussed 
in text. 

triangles, as if blockade of the permeability near the hot boundary, where the air is 
least soluble in water, subdivided the plumes. Figures 10 and 11 were produced from 
photographs of circulation free of interstitially precipitated air, since, while 
interesting, the conditions of the open circles could not be reproduced. The 
implication for chemical precipitation in natural systems is that it should induce 
narrower convective cells than would otherwise occur, not the reverse as has been 
implied by many authors discussing various types of pipe convection models that are 
broader than they are high (e.g. Elder 1965). 

The smooth sequence of triangles in figure 13, joining with the filled circles from 
the upward power sequence, can be considered a representative set of consistent 
experimental data, unaffected by major extraneous events or trends. Since many of 
the corrections applied to the data become large a t  high power levels, their 
association with the upward trend of the curve should be discussed. At the conditions 
of figure 11 ( d ) ,  the raw temperature difference between the circulators was 35.70 "C, 
and the correction applied to account for boundary-layer drops, arising out of figures 
5 and 8, was 4.21 "C. Had it not been applied, the Nusselt number would have been 
12 'YO lower and the Rayleigh number 12 'YO higher. The temperature measured by 52 
in the middle of the fill was 27.63 "C, while the effective mean temperature Ihc = 0.5 
x (THc + TCB -0 .4F)  (3.4) was 34.04 "C. The first of these, being representative of the 
mean state of water in the porous slab, was used to obtain a corrected value of Y / K ,  

since the hot plumes are narrower than the cold plumes when their viscosity is much 
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less, and the measured average temperature of the fill is a better guide to the effective 
viscosity and conductivity than the mean temperature of the boundaries. However, 
the buoyancy of those hot plumes is the result of expansion of the liquid over the 
entire temperature difference across the fill, and so the mean temperature should be 
used, applied to a formula representative of the total expansion from 2 0 ° C  to 
(2 TM,-20) "C, a simple and consistent version of the approximate effective 
boundary temperatures. In  fact, whenever the hot boundary temperature was 
greater than 30 "C, the simple form of ACOR (3.3) used in (4.2) was replaced by 

BCOR = (1 +(Ts,-20)0.0217+(Tsz-20)20.000062)(1 +(T,C-20)0.045) (4.4) 
For the conditions of figure 11 ( d )  there are three possible ways to make the Rayleigh- 
number correction : 

ACOR (T.,) = 1.58; BCOR (Tsz, TMc) = 1.91; ACOR (TMc) = 2.11. (4.5) 

The first would put the figure 11 ( d )  point well to the left of where it is on figure 13, 
steepening the upper part of the curve to a ridiculous degree; the extreme correction, 
as was used for the first experiment to prepare figure 8, would move it 10% to the 
right. This would put that particular point onto the curve of figure 8, but it would 
not alter the decisively different form of the two curves. The upward trend a t  high 
Rayleigh number for this experiment is real, and it is either associated with the 
diminution of convective scale shown by figures 10 and 11 or other experimental 
effects. 

5. Discussion 
5.1. A semi-empirical fit to the heat transport 

Since the basic goal of this research is to develop enough understanding of convection 
in a porous medium to be able to extrapolate sensibly to full-scale geothermal 
systems, then approaches intrinsically confined to low or moderate Rayleigh number 
are of little value, be they experimental or theoretical. The usual procedure is to 
conduct an experiment, or experiments, and then model the results in some way that 
increases understanding. For example, Ping Cheng (1978) compiles a selection of 
results, in a similar manner t o  figure 2, and superimposes a theoretical upper bound 
(Gupta & Joseph 1973), calculations based on the Galerkin method (Straus 1974) and 
a direct numerical solution (Cornbarnous & Bia 1971). These agree with the jump 
in Nusselt number just above critical and with each other to a Rayleigh number 
of about 70, but diverge thereafter, and terminate in validity a t  a Rayleigh number of 
about 300. Interestingly, this is where the visualization scheme shows the pattern of 
convection to change character, and where the Nusselt-number curve of the second 
experiment turns upward. 

The availability of both pattern and heat transport data for the second experiment 
suggests that the first should be utilized in some way to predict the second. The 
method that will be used is a very simple application of the theory of heat flow into 
a boundary layer, since it is clear from the Introduction, as well as the photographs, 
that  phenomena in the boundary layers dominate the convection a t  high Nusselt 
number. In a boundary layer formed entirely by cooling into the free surface of a 
lateral advection, such as in the formation of lithosphere from the Earth's mantle, 
the heat flow is proportional to l/&, where t is age from the time of divergence (Davis 
& Lister 1974; Lister 1977). The deviation from this simple law at the actual 
divergence extends out to  very short times, and, in particular, the average heat flow 
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out to age t conforms very closely to twice that at the terminating age. In  a porous 
medium with a solid conductive boundary, the flow in constrained to be parallel to 
the boundary between the point of impingement of a plume from the other side of 
the layer until the fluid peels off again to form the return plume. Friction is between 
the fluid and the matrix, not fluid and the boundary, so that the flow picture 
conforms very closely to the free boundary in free convection, there being no special 
velocity shear near the boundary. Provided that the geometry of the spreading 
plumes does not change radically (such as from rolls to squares with quite different 
flow properties), the boundary heat flux should be proportional to i / ~ i  where T is the 
residence time of the fluid in the boundary layer. The geometry condition is 
reasonably well satisfied by the sequence shown in figures 10 and 11, since the pattern 
shrinks without changing character except for the gradual development of dendritic 
downwellings a t  the highest Rayleigh numbers. 

The next step is to presume that the lateral velocity in the boundary layer remains 
proportional to the vertical plume velocity, since the former has not been measured, 
but the latter has. Data obtained by dye-link generation in a Hele-Shaw cell 
(Hartline 1978) has been closely fitted by the relation 

V* = 1.31 ( d - 4 4 ~ ~ ) ’ . ~ ~ ,  (5.1) 

where V* has been non-dimensionalized by dividing the real flux velocity (observed 
velocity x porosity x Poiseuille correction factor) by K/h (Booker, J. R. & Hartline, 
B. K., unpublished manuscript 1981). It was found that the areal scale of the 
convection cells is inversely proportional to (d + C) where C = 708 (figure 12), so 
their linear scale is proportional to (d + C)-0.5. Thus the residence time of fluid in the 
boundary layer is proportional to the linear scale divided by the velocity 

(5 .2 )  7-cc (d + C)-o,5(d - 4TP-o.72, 

N = 0.159 (d + C)0.25(d  - 4 4 ~ ~ ) ~ . ~ ~ ,  

and the mean heat flux, or Nusselt number, is then given by 

(5.3) 

after fitting the level to the data at a Rayleigh number d = 300. This equation is the 
solid curve in figure 13 and a remarkably good fit to the data in the range 50 < 
d < 500. It cannot be expected to work near the onset, where the plume divergences 
and convergences fill most of the space, and diverges from the data where the latter’s 
slope breaks upward a t  a Nusselt number of 10. 

5.2. Heat transport divergence at high Rayleigh number 

One of the mechanisms that could cause an upward break in the Nusselt number 
slope is the packing anomaly for beads a t  a flat boundary (figure 14a). In the case 
of the second experiment, the beads have a much lower conductivity than the fluid, 
while the water has a conductivity twice that of the matrix as a whole. For something 
like a third of the bead diameter, or 1 mm, the conductivity is effectively doubled, 
so that the increment in heat transport can be estimated by thinning the boundary 
layer by 0.5 mm. For the conditions of figure 11 ( d ) ,  N = 35.5 and the boundary layer 
is just over 4 mm thick, so the conductivity effect should increase the heat transport 
by 13%. Even allowing for some modest further increase due to the rise in 
permeability, this boundary phenomenon cannot explain the factor-of-two actual 
increase in Nusselt number above the theoretical curve of figure 13, which accurately 
represents the trend of the lower Rayleigh-number data, including the onset of 
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FIQURE 14. ( a )  A two-dimensional example of the boundary packing problem. Close packed 
cylinders have smaller spaaes between them (black) than there are at the boundary (shaded). 
Conduction from the boundary begins entirely in the pore fluid. (b )  Lateral thermal dispersion. 
Ideal flow in a porous medium is rectilinear (left). In  a real bead medium, channels are tortuous 
and juxtapose flows from different levels in a transverse temperature gradient. 

changes in the pattern. There was no such up-turn in the Nusselt-number curve for 
the experiment with fibrous fill (figure 8). 

If it is a property of the fill that is causing the peculiar shape of the Nusselt- 
number curve, what property is it ; in particular, what does the bead fill do that the 
rubberized fibre cannot! I propose that the key property is lateral dispersion. There 
is a fair amount of discussion in the literature about longitudinal dispersion, but, for 
thermal convection, longitudinal dispersion only adds some of the heat capacity of 
the fluid to that of the matrix. The thermal porosity is therefore smaller than the 
physical porosity, but the only known effect of the high thermal mass of the 
stationary matrix is to reduce or eliminate temporal changes in the pattern of 
convection. Lateral dispersion can, however, have a large effect on the convection 
when the boundary layers become comparable in size with the diffusion length of the 
lateral dispersion : the bead size. The pores between beads are interlacing channels, 
that is, they continually join and separate again, occasionally juxtaposing flows that 
would otherwise be separated by a substantial thermal-diffusion distance (figure 
14b). Even without any turbulent mixing, this greatly enhances inter-channel 
thermal contact, and the use of beads with an irregular shape means that there will 
be some actual flow exchange between channels. Thus is the effective thermal 
diffusivity raised, but only if the flow velocity is sufficient to juxtapose channel 
streamlines more frequently than they would diffuse into equilibrium with each other 
by conduction. There is no effect from lateral thermal dispersion, either a t  the onset 
of convection or under conditions where the pores are fine enough to meet this new, 
more stringent requirement for ' true ' porous-medium behaviour. 

The heat transport measurements of the second experiment begin to deviate from 
the expected curve at a Rayleigh number of 400. Using the aforementioned 
measurements of plume velocity and the physical porosity of 0.38, the fluid velocity 
in the plumes should be about 0.23 mm/s, and the flow time around a bead should 
be about 20 s. The thermal diffusion time between flows that are on average 2 mm 
apart is about 60 s. The plumes are thus already subject to substantial lateral 
dispersion, and the more slowly moving horizontal boundary layers could begin to be 
affected. Unfortunately there do not seem to be any data on the lateral velocities of 
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boundary layers. In one reversed-polarity dye-line photograph of Hartline (1978), 
plumes are outlined by colour generation near the boundaries, and are narrowest t 
to + of the way across the Hele-Shaw apparatus. They gather flow from a base area 
of modest width and then mushroom toward the opposite boundary, suggesting that 
pressure and suction from the plumes is the primary drive, and that the velocity ratio 
is a t  least 3 : 1. 

Lateral dispersion of the plumes could explain a phenomenon observed when the 
apparatus was freshly filled and contained regions of clear water, yellow 
bromothymol and blue bromothymol. The heater was turned on to mix the fluid, 
and, in spite of a very rapid rise in the temperature of the hot boundary, only large, 
featureless, single plumes were seen to appear at the top boundary, separated by 1.5 
layer thicknesses. Mixing turned out to be very slow on the scale of the apparatus, 
since steady convection cells have closed streamlines : without some lateral dispersion 
it could have taken years ! 

5.3. Quantitative differences between the experiments 

The remaining problem is the great difference in the position of the first breakover 
in slope of the Nusselt-number curves from the two experiments. In the curled fibre 
it is a t  d = 700, N = 22, AT = 0.73 O C ,  while in the polymethylmethacrylate beads 
it is at  d = 85, N = 3.2, AT = 2.02 "C. The slopes of the post-break curves are not 
very different: 0.59 for the fibre and 0.52 for the beads, although by a Rayleigh 
number of 2580 the former is in a 'fluctuating regime' of some sort, while there is no 
evidence for any fluctuation in the bead experiment. There are no measurements, in 
part because the strong family resemblance between patterns from one sequence, 
taken weeks apart, seemed at the time conclusive evidence of flow stability. There 
might be pulsations in the flow rate, but the convection is not 'turbulent ' in the free 
convection sense of an irregularly changing and non-repeating pattern. The form of 
equation (5.3) leaves limited options for the attainment of higher Nusselt numbers. 
The plume velocity simply cannot increase more rapidly than the Rayleigh number 
because the parameter kernel that determines the highest possible plume velocity, 
aATgDlv, contains the only parameters that change significantly with Rayleigh 
number, and in the same relationship used in its calculation. 

Neither the Hele-Shaw apparatus, in which the velocity measurements were made, 
nor the curled fibre medium, have significant lateral dispersion, but let us suppose 
that the corrections for colour diffusion in Poiseuille flow were in error and the power 
law obtained for velocity (5.1) is fortuitously correct only for the bead medium with 
dispersion. Then one can use an expression like (d2-167c4)o.5 for velocity in the 
curled fibre that tends rapidly to a linear relation with Rayleigh number. To obtain 
a linear relationship between Nand d out of (5.3) still requires that the linear scale 
of the convection cells be proportional to (d + C)-l, a much more rapid change than 
found for the bead medium, and becoming significant much earlier (smaller C). For 
example, the equation 

N = 0.02474 (d + lo)'.' (d2 - 1 6 7 ~ ~ ) ' . ~ ~ ,  (5.4) 

obtained by the same square-root law of flux argument as (5.3) and fitted to the point 
N = 10 at d = 400, provides a reasonable fit to the lower section of the data curve. 
Since there was no visualization in the first experiment, the pattern-related term 
(d+10)0 .5  must be considered pure speculation, and it is also a feature of 
experiments designed to reach very high Rayleigh numbers that data is poor near the 
onset. Had the apparatus been made of more corrosion-resistant materials, there 
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would be a case to be made for repeating the first experiment with a less permeable 
open-cell foam and the full visualization equipment. The lack of stabilizing thermal 
mass in the matrix may lead to a very different development of the convection 
pattern. 

6. Conclusions 
The solution of the geothermal problem of what the heat transport of porous- 

medium convection becomes at high Rayleigh number, hinges on the development of 
the boundary-layer structure and the spacing of plumes. For example, a theoretical 
treatment of free convection between fixed boundaries under conditions of very high 
Prandtl number (Roberts 1979) gave a basic relationship N = f”* where the factor 
f is a function of the aspect ratios of the cells. This function is not a simple power law, 
but close to a square-root relation when widthlheight is in the range 0.3-1. It is 
equivalent to the pattern-scale factor (a? -t 17)~ in the Nusselt-number equations (5.3) 
and (5.4). Other work on the heat transport of two-dimensional flow over a heated 
strip indicated that the power law for a free boundary should have an exponent of 
0.33 rather than the 0.2 of a fixed boundary (Roberts 1977). Applying the simple 
‘residence time’ analysis of this paper leads to  a flow velocity following a power law 
of lending a little credence to the plume-velocity relation used in (5.3). While 
the view that boundary heat flux is inversely proportional to the square root of 
residence time in the boundary layer seems crude when compared to elegant 
mathematical theories, it offers the possibility of order-of-magnitude validity over a 
range of conditions beyond where those theories break down. 

The first experiment, using a curled fibre medium, demonstrates that an upper- 
limit equation like (5.4) ceases to have validity well before free convection conditions 
take over in the apparatus. Even in the most compliant medium, boundary-layer 
subdivision cannot continue indefinitely a t  such a rapid rate, and the idea of Elder 
(1967) that N c c d  until free convection intervenes is not valid. Exactly what regime 
takes over is not established by the experiment, except that it includes fluctuations 
in temperature a t  a fixed measurement point. Since a medium of near 100 % porosity 
does not occur in nature, the further investigation of this problem cannot be given 
a high priority: the example has made its point. 

The second experiment offers a solution to the problem of scatter in the results 
from prior experiments conducted in beds of beads of various kinds. Even under fully 
laminar flow conditions, lateral thermal dispersion increases the heat flux when the 
time for flow around a bead in a channel becomes comparable with the diffusion time 
across the bead. This effect is strongest when the beads are less thermally conductive 
than the fluid, and is minor when the reverse is true, such as with metal beads and 
oil. The extraordinarily high apparent Nusselt numbers obtained by Elder (1967) are 
probably due to the extreme contrast between the thermal conductivities of water 
and of polystyrene foam. Some of the remaining discrepancies may be due to 
differences in the methods used to correct for variations in fluid properties over the 
temperature ranges applied to the porous beds, since these methods are rarely 
reported. 

The boundary flow visualizations over a wide range of Rayleigh numbers 
demonstrate two things: one is that, at Rayleigh numbers over 170, the convection 
becomes intrinsically three-dimensional, and cannot be properly modelled by either 
two-dimensional computational arrays or two-dimensional experiments, such as 
those using Hele-Shaw cells (Hele-Shaw 1898). The other is that the scale of the 
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convection does start to decline with increasing Rayleigh number, varying 
approximately as the inverse square-root of that number. If the peak plume velocity 
were proportional to Rayleigh number, which is the highest i t  can be in vigorous 
convection, then such a scale variation would be sustainable to indefinitely high 
Rayleigh numbers. This is because the time required for inter-plume thermal 
diffusion, changing as the inverse square of plume separation, would remain in 
constant proportion to the transit time of fluid in the plumes. If the plume velocity 
does not increase as rapidly as Rayleigh number, then the scale variation would enter 
a new regime where it would be limited by inter-plume diffusion, and the log-Nusselt- 
number curve would change from the slope of 0.61 predicted by (5.3) to 0.54, if the 
relation found by Hartline (1978) remained valid. 

If the slope of the log-Nusselt-number/Rayleigh-number curve seems closely 
constrained to  the 0.5-0.6 range, the level a t  which this slope is established remains 
more open. The breakover occurred a t  N = 3 in the layer of beads but a t  N = 22 in 
the bed of curled fibre, passing the Rayleigh number of 1000 a t  N = 12 and N = 29, 
respectively. The probability is that a low-porosity , low-dispersion medium, such as 
a cracked rock, would fall somewhere in the middle, such as passing d = 1000 a t  
N = 19. Thus the best prediction one can make for geophysical systems is 

N = 0.425 ( f 40 Yo) d0.55*0.05 (6.1) 

a t  high Rayleigh number. This power law is between those predicted by the 
boundary-layer theories of Palm, Weber & Kvernvold (1972) and Robinson & 
O’Sullivan (1976). It requires a Rayleigh number of 93000 for the Wairakei 
geothermal area discussed in the Introduction. The plume separation, as a function 
of the equivalent layer scale height h, should be 

(6.2) S = 48 (d + 708)-0.5h, 
with unpredictable error bounds. The key feature is that  the lateral scale of a 
convection cell is never greater t,han the layer height and decreases with increasing 
vigour of the convection. Geothermal plumes are therefore unlikely to be able to 
concentrate heat from a wide and diffuse source area. The effect of a precipitate 
that blocks channels near the hot end of the convecting slab (air) was found to 
greatly decrease the scale of the convection cells and only modestly depress the heat 
transport (figure 13 and associated text). 

Experiments using beads to form the porous medium will have to be designed 
much more stringently in the future, to  take account of lateral thermal dispersion. 
A medium approximating an array of vertical cracks would be much more 
representative of natural systems, has no boundary problems and no lateral 
dispersion, but poses formidable constructional difficulties, especially for large aspect 
ratios of the apparatus. Good measurements of plume velocity and the flow speed in 
the boundary layers would greatly improve understanding of the convective 
mechanism and could probably tighten the error bounds on the prediction of heat 
transport a t  high Rayleigh number. 
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